ONNX
Inference with ONNX models
Text-generation model
Command usage
usage: nexa onnx [-h] [-t TEMPERATURE] [-m MAX_NEW_TOKENS] [-k TOP_K] [-p TOP_P] [-sw [STOP_WORDS ...]] [-pf] [-st] model_path
Options
-t, --temperature
: Temperature for sampling-m, --max_new_tokens
: Maximum number of new tokens to generate-k, --top_k
: Top-k sampling parameter-p, --top_p
: Top-p sampling parameter-sw, --stop_words
: List of stop words for early stopping-pf, --profiling
: Enable profiling logs for the inference process-st, --streamlit
: Run the inference in Streamlit UI
Streamlit Interface

Image-generation model
Command Usage
usage: nexa onnx [-h] [-ns NUM_INFERENCE_STEPS] [-np NUM_IMAGES_PER_PROMPT] [-H HEIGHT] [-W WIDTH] [-g GUIDANCE_SCALE] [-o OUTPUT] [-s RANDOM_SEED] [-st] model_path
Options
-ns, --num_inference_steps
: Number of inference steps-np, --num_images_per_prompt
: Number of images to generate per prompt-H, --height
: Height of the output image-W, --width
: Width of the output image-g, --guidance_scale
: Guidance scale for diffusion-o, --output
: Output path for the generated image-s, --random_seed
: Random seed for image generation-st, --streamlit
: Run the inference in Streamlit UI
Streamlit Interface

Automatic Speech Recognition model
Command Usage
usage: nexa onnx [-h] [-o OUTPUT_DIR] [-r SAMPLING_RATE] [-st] model_path
Options
-o, --output_dir
: Output directory for transcriptions-r, --sampling_rate
: Sampling rate for audio processing-st, --streamlit
: Run the inference in Streamlit UI
Streamlit Interface

Text-to-speech model
Command Usage
usage: nexa onnx [-h] [-o OUTPUT_DIR] [-r SAMPLING_RATE] [-st] model_path
Options
-o, --output_dir OUTPUT_DIR
: Output directory for text-to-speech output-r, --sampling_rate SAMPLING_RATE
: Sampling rate for audio processing-st, --streamlit
: Run the inference in Streamlit UI
Streamlit Interface

Last updated
Was this helpful?